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The diffraction of regular waves by a vertical circular cylinder in finite depth water is 
considered, within the frame of potential theory. The wave slope kA is assumed to be 
small so that successive boundary value problems at orders kA, k2A2, and k3A3 can be 
formulated. Here we focus on the third-order (k3A3)  problem but restrict ourselves to 
the triple-frequency component of the diffraction potential. The method of resolution 
is based on eigenfunction expansions and on the integral equation technique with 
the classical Green function expressed in cylindrical coordinates. Third-order (triple- 
frequency) loads are calculated and compared with experimental measurements and 
approximate methods based on long-wave theories. 

1. Introduction 
In the recent past there has been much concern in the offshore industry about 

the ‘ringing’ problem. Ringing is a phenomenon that has recently been seen in some 
deep-water structures such as tension leg platforms (TLP’s) and gravity base towers, 
when their natural periods fall in the 3-5 s range. Model tests and measurements at 
sea have revealed bursts of resonance in design sea-states, i.e. sea-states with peak 
periods typically 3 to 5 times the resonant periods. Such ratios suggest that strongly 
nonlinear phenomena occur in the loading process. 

Wave loads on large offshore structures are usually tackled within the framework 
of potential theory. For a vertical circular cylinder, at high Reynolds numbers, this 
approach is justified as long as the wave amplitude does not exceed the radius. 

For a fixed structure, nonlinearities in the boundary value problem are confined 
to the dynamic and kinematic boundary conditions at the free surface. (For the 
loading other nonlinearities intervene owing to the quadratic term in the Bernoulli 
equation and to the pressure integration around the waterline.) When the free surface 
boundary conditions are linearized, resolution of the resulting linearized, or first-order, 
diffraction problem yields loads occuring at the wave frequencies and proportional to 
the wave amplitude. For a vertical cylinder the problem was first solved by Havelock 
in 1940 for infinite water depth and extended by Mac Camy & Fuchs to finite depth 
(e.g. see Mei 1983). 

Development of the tension leg platform concept aroused interest in the next order 
of approximation: the second-order diffraction problem, where loads at the sum (and 
difference) frequencies of the wave components are produced. These loads, known as 
‘springing’ loads, affect the tethers in moderate sea-states and must be accounted for 
when calculating their fatigue life. 
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Second-order diffraction theory has now become a well-established topic. After 
pioneering papers by Lighthill (1979) and Molin (1979), diffraction loads on vertical 
cylinders were given by Molin & Marion (1986) and Eatock Taylor & Hung (1987). 
Numerical methods were subsequently proposed that yield localized second-order 
pressures (instead of the global loads), or even the second-order potential in the 
complete fluid domain (Kim & Yue 1989; Scolan & Molin 1989; Chau & Eatock 
Taylor 1992). Springing loads are now calculated in a standard way for such complex 
structures as TLP’s at their resonant frequencies (Chen & Molin 1991; Newman & 
Lee 1992; Eatock Taylor & Chau 1992). 

As already described, higher-order than second-order theories are required to 
predict ringing loads. Rather than trying to extend diffraction theory to higher orders, 
many researchers are following a different route, whereby the complete nonlinear 
problem is solved in the time domain. In two dimensions, so-called numerical 
wave tanks have proved valuable tools to study such problems as wave generation, 
propagation, and diffraction on obstacles (e.g. see Cointe 1990). So it appears to be 
just a matter of adding another dimension and increasing the size of the problem. So 
far only very limited results in three dimensions have been given (e.g. Romate 1989; 
Ferrant 1994). 

Another approach is based on the observation that ringing occurs in long waves, 
typically at ka values around 0.15-0.30, k being the wavenumber and a the radius. 
In such a long-wave regime, first-order diffraction loads are reasonably well predicted 
by the so-called Morison equation when only the inertia term is retained. It has 
been conjectured that the Morison equation, or extensions of the Morison equation, 
could then be used to predict the nonlinear components of the loading as well. 
Such extensions (accounting for the quadratic term in the Bernoulli equation, and 
for spatial gradients in the incoming flow) have been proposed by Madsen (1986) 
and Rainey (1989), and used to predict ringing behaviour (Jefferys & Rainey 1994). 
More recently Faltinsen, Newman & Vinje (1995) have produced a low-ka low-kA 
theory ( A  being the wave amplitude), that gives the lowest-order approximations 
(in terms of ka) to the O(k2A2) (second-order) and O(k3A3) (third-order) loads. 
It should be noted that their approach differs from the one followed here in the 
sense that they assume the radius a and the wave amplitude A to be of the same 
order. 

To establish the domain of validity of such approximations, ‘exact’ results are 
needed. Comparisons with experimental results may be considered. Unfortunately, 
for the time being, physical experiments do not appear to be a tool reliable enough 
to produce such elaborate information as third-order (triple-frequency) loads. 

These considerations have motivated the present study, where we calculate exactly 
the third-order loads on a fixed vertical cylinder in finite depth. By ‘exactly’ we 
mean according to the classical Stokes perturbation scheme: the wave amplitude (or 
steepness) is of order e, but the wavelength and radius are unrestricted (order 1). 
In the next section we develop the general equations of the problem, and formulate 
the boundary value problems (BVP) satisfied by the diffraction potential, at first, 
second, and third orders. The 
following section is devoted to the resolution of these problems. It is based on 
eigenfunction expansions and use of the Green function in cylindrical coordinates. 
Thanks to the geometry the second-order diffraction potential can be obtained semi- 
analytically in a manner similar to the one proposed by Chau & Eatock Taylor (1992). 
The procedure is then extended to the calculation of the third-order (triple-frequency) 
loads contributed by the third-order diffraction potential. These computations involve 

Associated expressions for the loads are given. 
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intricate numerical integrations on the complete free surface. In the last section 
a comparison is made with available experimental results, which exhibit a large 
scatter and do not permit full validatation of our numerical results. They are then 
compared with those given by the long-wave theory of Faltinsen et al. (1995), and 
the overlap region is found to be reduced to very small values of the non-dimensional 
wavenumber ka. 

2. General equations 
2.1. Boundary value problems 

Classical assumptions of perfect fluid and irrotational flow are made. We define a 
right-handed coordinate system (x, y ,  z), with z = 0 the undisturbed free surface, the 
axis z pointing upward and coinciding with the cylinder axis. The cylinder is standing 
on the sea bottom, assumed to be horizontal at z = -H. The cylindrical coordinate 
system ( r ,  8, z )  will be used most often. The incoming wave system propagates along 
the x-axis. 

The flow can be described by a velocity potential @(x, y ,  z, t )  that obeys the following 
equations. 

In the fluid: 

A@ = 0. (2.1) 

Combination of the dynamic and kinematic conditions at the free-surface results 
in : 

I -  a 2 @  a@ a@ 
- + g - + 2 v @ * v - + + v @ ~ v ( v @ ~ v @ ) = o  { a t 2  az at z = 1  

where S ( x , y ,  t )  is the free surface elevation 

On the cylinder wall and sea floor the no-flow condition is written: 

V@.n = 0, (2.4) 

and finally an appropriate radiation condition must be satisfied at infinity. The 
convention used throughout this paper is that the normal vector n is pointing out of 
the fluid domain. 

The main difficulty lies in the free surface conditions which are nonlinear and 
are written at an unknown position. To overcome this problem we proceed in the 
classical way suggested by Stokes. First we assume that the displacements of the free 
surface are small and we express quantities at the exact free surface by Taylor series 
developments based on the mean free surface position. We write 

This gives for the free surface elevation 

(2.5) 
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and for the free surface condition 
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this equation being applied at the mean position of the free surface z = 0. 

steepness ( E  = koA with ko the wavenumber, A the wave amplitude): 
The next step is the introduction of the perturbation series with respect to wave 

@ = &4(1) + &24(2)  + &34(3)  + 0(&4). (2.8) 

E4(1) = Re{cp(l)e-iUf}, (2.9) 

Also we assume time periodicity at frequency o for the flow at first order: 

from which we easily deduce the form of the higher-order potentials: 

&24(2)  = ~ ( 2 )  + Re(q(2)e-2"3t}, 

E34(3) = Re{,p(3)e--icJ)t} + Re{q(3)e-3ht 1. 
(2.10) 

(2.11) 

As stated in the introduction we are interested only in high-frequency phenomena. So 
the potentials q(2) and ,p(3) will be discarded. The same perturbation series is assumed 
for the free surface elevation 3: 

3 = & ~ ( 1 ) + & 2 ~ - - ( 2 ) + & 3 ~ ( 3 ) + 0 ( E 4 )  

= ~ ~ { ~ ( l ) ~ - i w f } + q  (2) + Re{y (2) e -2iot }+Re{?j(3)e-'wt } +Re{q(3'e-3i"f} +0( c4), (2.12) 

After introduction of the perturbation series for the potential in the original free 
surface condition we obtain the following free surface conditions and free surface 
elevations at the corresponding orders: 

(2.13) 

(2.14) 

O(c.2) 

(2.16) 
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where v = w2/g Also, all these potentials must satisfy the Laplace equation in the 
fluid domain, the no-flow condition on the fixed boundaries and adequate radiation 
conditions which will be discussed later. 

2.2. Wave loads 

They are calculated by integration of the pressure over the time-varying wetted surface 
of the cylinder: 

where the pressure is calculated from the Bernoulli equation : 

a@ 2 p = --ggz - Q- - &(V@) . 
a t  

(2.18) 

(2.19) 

In order to collect the terms at the different orders in E the integral on the wetted 
surface is decomposed in two parts: 

(2.20) 

S B ~  being the mean wetted surface and C B ~  the mean waterline. 
The loads are decomposed as: 

and the following expressions are obtained at the first three orders: 
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W3)  

3. Calculation of the potentials 
The boundary value problems for the potentials at the different orders have the 

same form and the resolution will be discussed in the general case. Consider the 
following boundary value problem for the potential cp : 

in the fluid 

Acp = 0, (3.1) 
at the free surface z = 0 

dV 
az 

- acp + - = Q(r ,  d) ,  

at the fixed boundaries (cylinder surface and bottom) 

- _  -0, 
dn  (3.3) 

and a radiation condition for the diffracted part which will be discussed in each 
particular case. 

The following decomposition of the potential is introduced : 

cp = cpi + CPD = c ~ i  + c p ~ i  + (POD (3.4) 

where cp1 denotes the incident potential, and cpDl and c ~ D D  represent diffraction 
components. 

The incident components are easy to calculate in all three cases because these 
potentials do not satisfy the condition on the body or the radiation condition. At the 
free surface they must satisfy 

where Q I ( r , O )  denotes the right-hand sides of the free surface conditions (2.15), 
(2.17), in which only the terms coming from direct products of incident potentials 
are retained. 

The first part 4001 of the diffraction potential is chosen to satisfy the condition on 
the cylinder and an homogeneous condition on the free surface. It follows that it 
satisfies the usual Sommerfeld radiation condition. 
The B.V.P. is 

where ko is the solution of a = ko tanhkoH. 
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The second part c ~ D D  of the diffraction potential satisfies the homogeneous condition 
on the cylinder and a non-homogeneous one at the free surface: 

1 ~ D D  = 0, -H < z < 0, 

I r = a, 
(3.7) 

and a radiation condition for r --+ 00, that needs to be made precise. The forcing term 
on the free surface Q D ( r ,  0) contains all remaining terms in Q(r, 6) after subtraction 
of the pure incident contributions: QD(r, 0) = Q(r, 0) - Ql(r, d). 

Since we consider the case of a circular cylinder and because of the symmetry of 
the flow about the x-axis we develop all quantities as cosine Fourier series: 

cc 

f(r,e,z) = C e m f m (r,z)cosmO (3.8) 
m=O 

where em is equal to 1 for m = 0 and 2 for m > 0. 

3.1. Potential cpD1 

As explained earlier this potential is a standard linear diffraction potential and can 
be found easily, by eigenfunction expansions, in the form 

33 a, 

4001 = C emLfo(z)PmoHm(kor) + C f n ( z ) ~ m n ~ m ( k n r ) ~  cos me  (3.9) 
m=O n= 1 

where Hm are Hankel functions of the first kind Hm = Jm + iY,, and K ,  are modified 
Bessel functions. The functions fn(z) are defined by 

cash ko(z + H )  
f o ( z )  = cosh koH ' 

cos k,(z + H )  
cos k ,  H f n ( z )  = (3.10) 

with a =  ko tanh koH = -k, tan k,H.  
If we express the incident potential as 

m 

~1 = fI(z) C f m ~ l m ( r ) c o s m ~  (3.11) 

we can enforce the condition on the cylinder and obtain for the coefficients Pm,, the 
following expressions : 

m=O 

where CO and C,  are defined by 

(3.12) 

(3.13) 

(3.14) 
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3.2. Potential C ~ D D  

This part of the potential is the most difficult to calculate because of the non- 
homogeneous condition on the free surface. The method which will be used is based 
on the use of the Green function expressed as a series of eigenfunctions. 

Consider a Green function which satisfies the following set of equations : 

A< G(x,  5 )  = W), - H < i < O ,  

dG 
-aG + - = 0, 

dG 
- = 0, 
a i  

a i  I i = 0, 

< = -H,  
(3.15) 

where x and 5 represent respectively the source point ( r ,B , z )  and the field point 
(p ,  9,c). 6 is the Dirac delta function and At represents the Laplace operator with 
respect to the 5 variable. 

The solution for G ( x , r )  is well known (e.g. see Mei 1983) and can be written in 
the following form: 

(3.16) 

with 

We now write the classical integral equation 

(3.18) 

It can be shown (see Appendix A), although not quite rigorously, that the integral over 
the control surface at infinity S, disappears at all three orders and this disappearence 
represents, in some way, the radiation condition for this part of the potential. 

The next step is to develop the solution for ~ D D  on the cylinder, as a series of 
eigenfunctions. For each Fourier mode we write 

(3.19) 

If we now write the integral equation for a point inside the cylinder, I = a - 6 ( a  2 
6 > 0) we can deduce the values of the A,, coefficients by using the orthogonal 
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properties of the eigenfunctions: 

21 1 

(3.20) 

(3.23) 

This is the same expression as obtained by Chau & Eatock Taylor (1992) by using a 
modified Green function that satisfies the homogeneous condition on the cylinder. Al- 
though the solution is expressed as a series of eigenfunctions which individually satisfy 
the homogeneous free surface condition, it can be shown that the sum of the series 
satisfies the non-homogeneous condition when z -+ 0- (Chau & Eatock Taylor 1992). 

In order to calculate the forcing term Q',"' in the free surface condition for the 
third-order potential (P(~)  we need to know the second-order potential (P(~)  at the free 
surface, and some of its derivatives. So the logarithmic singularity that occurs in 
expression (3.22) for (pfi,,, must be treated carefully when evaluating these quantities 
(Fenton 1978; Chau & Eatock Taylor 1992). For details we refer to Malenica (1994). 

4. First-order potential 
The solution for this potential is well known and we just recall it here: 

(4.3) (1) - 0 
(POD - 9 

with v = 0 2 / g  = ko tanh koH and ZtJ = Jk(koa) /Hk(koa) .  
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5. Second-order potential 

S. Malenica nnd B.  Molin 

In this case the coefficient CI is 4v and the forcing term on the free surface is 

which in the case 

with VO denoting 

The forcing term 

of a fixed cylinder can be written as 

the horizontal gradient 

5.1. Incident second-order potential q?) 

@ ( r ,  0) is given by 

The potential which satisfies the free surface condition with this forcing term, the 
Laplace equation in the fluid and the no-flow condition on the bottom is also well 
known : 

3icoA2 cosh 2k0(z + H)e2ikorCOS0 qy) = -___ 
8 sinh4 koH 

5.2. Second-order d@raction potential qg] 
The general solution is given in $3.1 and it can be applied in a straightforward 
manner. We define the wavenumbers K O , K ,  as 

4v = icO tanh KOH = - K ,  tan K,H. (5.5) 

One needs only to apply equations (3.12) and (3.13) where 

and the z integrals are given by 

5.3. Second-order diffraction potential qgA 
The general solution for this art of the potential is given by (3.22). In the second- 
order case the forcing term Q$(r , e )  is given by 
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Knowing explicitely the first-order potential we can easily calculate the Fourier modes 
QDm(P), by using the following identities: 

m=O n=O m=O Ln=t  
m 

m m m 1 + C a m - n b n  cos me, 
n=O 

c E m K m  sin c C n P n  sin = c Cm [ e ( a n P m + n  + K m + n P n )  

m=O n=O m=O n=l 

- g 4 ]  cosmo. 
/ 

(5.9) ' 

By setting x = Hm(Kop)cosm9, cp = cpg', y = 'pD (1) and then y = cpj'), we obtain 

This simplifies the infinite oscillatory integrals which now involve only triple products 
of Hankel functions and can be calculated in the semi-analytical way proposed by the 
authors mentioned above. The numerical method which is used for the numerical part 
of the integration is the simple trapezoidal rule combined with Romberg quadrature. 
In fact we do not need more-sophisticated methods because we must calculate the 
second-order potential at points very close to the free surface anyway, in order to 
calculate its radial derivative numerically, by finite differentiation. So the infinite 
oscillatory integral (5.10) is calculated only once for r = a and then we move from 
left to right by Ar and successive integrals are obtained by simple subtraction of 
the trapezoidal surface from r to r + Ar. Owing to the special treatment of the 
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singularity at the free surface this procedure is not possible for the parts associated 
with the modified Bessel functions K,, but these contributions being localized can 
be calculated for each point separately, with a sufficient accuracy and without very 
much computational effort. 

6. Third-order potential 

surface is 
For the third-order problem the coefficient CY is 9v and the forcing term on the free 

Q(3) has two components: the first one, Qy'(r,O), involves triple products of first- 
order quantities, whereas the second one, Q f ) ( r ,  O ) ,  involves products of first-order 
and second-order quantities. As in the second-order case we can simplify their 
expressions, taking advantage of the geometry and of the fact that the cylinder is 
fixed : 

Qy'(r,  0 )  = --[Voq (') - Vo(V0qp") - VO(P(')) + (13v2 - k&#)Vo4p(l) VO~I( ' )  
8g 

6.1. Potential 'p?) 

By introducing (4.1) and (5.4) in the above expressions we obtain for Qy'(r, 8) 

3iokiA3 
8 sinh4 koH Qy) ( r ,  8 )  = (11 - 2cosh2koH)e3ik0rC0Se 

and we deduce the third-order incident potential 

iokoA3 cash 3k0(z + H)e3ikorcos e (1 1 - 2 C O S ~  2koH) = -___ 
64 sin h7 ko H 

64 sinh7 koH m=O 
2 ~,i"J,(3k~r) cos me. (6.5) 

iokoA3 cash 3ko(Z + H) 
- - -___ (11 - 2~0sh2koH) 

We observe that both the second-order and third-order incident potentials are zero 
in the case of infinite water depth (note again that we deal here only with the 30  
component of the third-order potential). 
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6.2. Potential cp$] 

The procedure is exactly the same as at second-order, with the wavenumbers po, p,, 
defined by 

(6.6) 
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9v = po tanhpoH = -pfl tanp,H. 

We now have 

cash 3ko(Z + H )  
fj3’(z) = - 

24ko sinh3 koH ’ 
3ioki A3 

(1  1 - 2 cosh 2koH)imJ,(3kor). (3) - 
‘Irn - 8 sinh4 koH 

The z integrals are 

. (6.9) 
1 

Ski + p; 
fL3)(  z)ff’( z )dz = 

1 

9ki -pi’ [H 
lH ff’(z)fj3)(z)dz = 

6.3. Potential cpgh 
We shall only consider the contribution of the potential 9:; to the third-order force. 
From equation (2.24) this contribution is 

0 

F g ,  = -6 io~az  1, cp$hldz. (6.10) 

We can write 

As in the second-order case the main difficulty is associated with the calculation of 
the integrals over the free surface. The two contributions to Qg’, (6.2) and (6.3), will 
be treated separately. With the first one, calculations can be performed easily because 
the first-order potential is known explicitly and use of (5.9) for the products of two 
series gives the values of Q$(r,0) without much computational effort. So we write 
simply 

Q\2(r, 0) = Qf)(r, 0) - Qg)(r ,  0). (6.12) 

The second part QyJ(r, 0) can be developed as follows: 

(21v2 - ki)cpg’ + 5vQ;’ - - 
2 az= 

+ cp;’[(21v2 - 3ki)cpj2) + SvQj?‘]} . (6.13) 

The difficult terms are those which contain the potential &). This potential, its radial 
derivative, and its double z derivative, all appear. By using the identity (5.11) we can 
avoid the calculation of either the double z derivative or the radial derivative. Here 
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we have prefered to eliminate the double z derivative which is more complicated to 
calculate. To do this we use expression (5.11) in the form 

where the integral over C, is omitted because it disappears in the same way as the 
integrals Zg) (see Appendix A). 

This leads to the following expression: 

with Qiz which is now free of double z derivatives: 

By setting first x = Hl(pop) cos 0 and then = K l ( p n p )  cos 0, we obtain 

(6.17) 

where ()I and []I denote the first Fourier modes of the expressions within the brackets. 
With equation (6.10) this is the final expression for the evaluation of the &, 

contribution to the force F(3) .  As in the evaluation of the potential on the free 
surface, there are two main problems in the application of this expression. The first 
one is the local contribution associated with modified Bessel functions K1 (pna)  and 
the same method as used in the calculation of the local contribution to the potential 
c ~ D D  on the free surface can be used. In fact the coefficient p: which is introduced by 
the transformation (6.15) is annulled by the integral : 

9v 
f H  fk3'(2)dz = -- 

P i  
(6.18) 

and we have the same type of logarithmic singularity. 
The second problem concerns the oscillatory integral associated with the Hankel 

function Hl(por) .  Since there is no analytical expression for (pf; we cannot calculate 
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8/71 

FIGURE 1. First- and second-order components of the free-surface elevation at the waterline, for 
H = a, va = 2.0. Comparison with Kim & Yue's results. 

this integral in a semi-analytical way, as in the second-order case, and we must 
integrate it numerically until convergence. Advantage is taken of the fact that the 
integral asymptotically oscillates in r at known spatial frequencies (see Appendix A) 
to filter them out. It was found that convergence is usually reached within two or 
three wavelengths from the cylinder. We refer to Malenica (1994) for details. 

7. Results 
The method of calculation was first validated at second order by comparing our 

results with those obtained by Kim & Yue (1989). Figure 1 shows the free surface 
elevation at the waterline, compared to Kim & Yue's numerical results. The case 
considered is H = a, va = 2.0. The notation is 

these quantities being calculated for z = 0. In (7.4) * stands for the complex conjugate. 
The agreement is excellent. 
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FIGURE 2. First Fourier mode of the second-order diffraction potential & at the free surface, 
with its local and oscillatory components. H = 10a; va = 0.5. (a) Real parts, (b)  imaginary parts. 
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0 5 10 15 20 

rla 
FIGURE 3. Fifth Fourier mode of the total second-order diffraction potential at the free surface, 

together with its radial derivative. H = 10a; va = 0.5. (a) Real parts, ( b )  imaginary parts. 



220 

1 -  

0 -  

-1 - 
Q$'1@> - 

-2 - 

-3 - 

-4 - 

s'. Malenica and B. Molin 

.HW(HHO Re - Im 

2 ,  

-5 ' 1 I I 
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I I 1 
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FIGURE 4. Real and imaginary parts of Q$i at the free surface (see equations (7.8) and (6.17)). 
H = 1 0 ~ ;  vu = 0.5. 

The figures that follow show intermediate calculation results for the case of a water 
depth equal to 10 times the cylinder radius ( H / a  = lo), and for va = 0.5. 

Figure 2 shows the local and oscillatory contributions to the second-order diffraction 
potential qFh,,,(r,z) for m = 1 and z = 0 (at the free surface). The three curves 
correspond to the real and imaginary parts of 

&&,(r, 0)  = niCf'Hd~or) [ J ~ X O P )  - z,$fL(xo~)l QFA(p)pdp 

(7.7) 

Then figure 3 shows the real and imaginary parts of the total second-order diffrac- 
tion potential q g i ( r , z )  for m = 5 and z = 0, together with its first radial derivative 
(obtained numerically by finite differenciation). 

We now come to the calculation of the free surface integral (6.17), where the 

qFhm(r, 0)  = c~b2b",(r,o) + q D D r n ( r , o ) .  (2)1 
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FIGURE 5. Free surface integral (see equation (7.9)). H = 10a; va = 0.5. 

difficulty resides with the first term, because of its oscillatory nature. Figure 4 shows 
the real and imaginary parts of Qgl ,  defined as 

and figure 5 shows the oscillatory integral I ( r ) ,  defined as 

I ( r )  = I'HI(POP)Qb3b)PdP. (7.9) 

From this figure it does not look as if convergence is going to be quickly attained 
when r increases. The same kind of problem occurs at second order, and the same 
remedy as used in Molin & Marion (1986) has been utilized here: advantage is taken 
of the fact that the leading-order oscillations of I ( r )  are known (see Appendix A) 
to filter them out numerically. When vH > 3 (deep water) it is particularly easy 
because the oscillatory pattern repeats itself at half-wavelength intervals (we then 
have KO = 4ko and PO = 9ko). 

Finally we present results for the third-order horizontal load F ( 3 )  which is decom- 
posed into three components: 

Fi3' is the part which comes from triple products of first-order quantities: 

(7.10) 
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FIGURE 6. Third-order horizontal force on a vertical cylinder, decomposed in its three components. 
H = 10a. (a) Real parts, (b)  imaginary parts. 

Ff’ from products of first-order and second-order quantities : 

Fj3’ = V q ( ‘ )  - Vq‘2)ndS - QV 

and Ff’ due to the third-order potential: 

(7.11) 

(7.12) 
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FIGURE 7. Modulus of the third-order horizontal force, compared to experimental results. 
k0a 

H = 10a for the calculations. 

Still for H / a  = 10, figure 6 shows the real and imaginary parts of these three 
components (as functions of koa), together with their sum. It can be seen that all 
contributions are important. Figure 7 shows the modulus of F(3) ,  together with 
experimental results. These results were obtained by re-analysing data from experi- 
ments carried out within the scope of the VRMTLP Project (Moe 1993). The tested 
cylinder is a 1:40 scale model of one column of the Snorre TLP (radius: 12.5 m; 
draught: 37.5 m). These tests were considered as more reliable than others because 
they had produced second-order loads in very good agreement with calculated values. 
Unfortunately, as can be seen from the figure, the third-harmonic component of the 
measured force shows quite an appreciable scatter and no definitive conclusion can 
be drawn from the comparison. The objection can be made that the Snorre TLP 
column has little in common with a cylinder going all the way down to the sea floor. 
For koa > 1 the first-order wave field hardly reaches the bottom of the column and 
both structures can be regarded as equivalent (for the first- and third-order loads; 
not for the second-order ones!). As a matter of fact, when comparing figure 6(a) with 
figure 8(a), which relates to the case koH = 8, little differences can be seen at low koa 
values. This shows that, unlike second-order ones, third-order pressures are localized 
near the free surface. 

Since ringing occurs in long waves, with typical koa values in the range 0.15-0.25, 
we present in figure 8 the real and imaginary parts of the third-order force, for 
0 < koa < 0.25. In these calculations the water depth H varies with koa so that koH 
remains equal to 8. Calculations were also performed at koH = 4 and gave identical 
results, showing again that third-order pressures do not penetrate the water column 
deeply. 

As mentioned in the Introduction, some authors have suggested that long-wave 
theories could be used to predict the nonlinear components of the loading at low 
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FIGURE 8. Third-order force for koa < 0.25 and koH = 8. (a) Real parts, ( b )  imaginary parts. 

koa values. Faltinsen et al. (1995) give the third-order horizontal force, for koa and 
koA + 0, as asymptotically equal to 

F(3)  = -2 in: e g k;a2 A3 (7.13) 

with Fi3) accounting for one half, and Ff' and F r )  for one fourth each. These 
asymptotic values are lotted on figure 9, which is a blow-up of figure 8(b) for 
0 < koa < 0.05. For Ff?.) and its asymptotic value, we observe a good agreement, 
which actually extends to koa values over 0.10. However Ff' and F f j  depart from the 
theoretical values given by Faltinsen et al. much earlier, for koa around 0.02. Further 
comparisons between our results and Faltinsen et al.'s are given in Appendix B. 
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FIGURE 9. Imaginary part of the third-order force, for koa < 0.05 and koH = 8, compared with the 

asymptotic results of Faltinsen et al. 

8. Discussion 
An important result obtained in this analysis is that long-wave theories may not 

be applicable to the calculation of triple-frequency loads. As a matter of fact we 
did not expect them to do well for koa > 0.05, the reason being that their domain 
of validity seems to shrink as the square of the order of the load that they are 
used to predict: at first-order, the Morison equation with 1 + C,,, = 2 does predict 
accurately the diffraction loads for koa < 0.50. At second-order the agreement with 
the exact calculations (accounting for the second-order diffraction potential) is limited 
to koa < 0.12. Since the double-frequency free waves are four times shorter (in deep 
water) than the first-order ones, it is tempting to infer that the significant parameter 
is koa at first order, lcoa at second order, and poa at third order. poa less than 0.50 
means koa less than 0.05. 

From the results shown on figure 9, it looks as if 0.05 was too optimistic a figure 
and that it must be cut by half. 

Another conclusion that can be drawn from these considerations is that the spatial 
resolution of the problem must be in accordance with the free wavelength at frequency 
3w (271/p0). This is no problem with the numerical method employed here, owing to 
the Fourier series decomposition in the polar angle which reduces integrations on the 
free surface to line integrals. But it could be a problem in three-dimensional numerical 
wave tanks, since it means that the first-order wavelength needs to be discretized into 
about 100 elements. The resulting number of panels might be prohibitive. 

Our final comment is on validation. We have checked our developments and 
calculations as thoroughly as possible, but it is quite regretable that there be no reliable 
experimental data to confirm them. The same problem has plagued the development 
of second-order diffraction theory for years. Improvements in the experimental 
techniques have become a major issue for the progress of hydrodynamics. 
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This work was carried out within the scope of the CLAROM project: ‘high 
frequency resonances of offshore structures’, partly supported by the French Ministry 
of Industry. Partners in this project are Bureau Veritas, Doris Engineering, IFP, 
Ifremer, Principia and Sirehna. 

Appendix A. Far-field behaviour of the third-order diffraction potential 
Here we want to show that integrals such as 

which are involved in the integral equation (3.18) are zero. 
The radiation condition for the second-order diffraction potential has long been a 

controversial issue. In Molin’s original analysis (1979), it was tentatively shown that, 
at large radial distances, the second-order diffraction potential, to the leading order 
(O(A2/p1/2)), consists of two components: waves ‘locked’ to the first-order wave-field, 
with local wavenumber vector koi +koe (koi being the wavenumber vector of the 
incoming waves, and koo the local wavenumber vector of the first-order diffracted 
waves, in the radial direction); and ‘free’ waves, travelling in the radial direction with 
wavenumber K O  (given by 4 w2 = g K O  tanh K o H ) .  Even though this result was not 
established on purely rigorous mathematical grounds, it has now been accepted as 
being correct. 

This result comes out straightforwardly when one assumes that, far away from 
the body, the first-order diffraction waves can locally be regarded as plane waves 
traveling in the radial direction. The second-order analysis of such a dual plane wave 
system is easy and gives the locked waves. Radial free waves then must be added to 
account for the nonlinearities occurring in the vicinity of and on the structure. 

Here we just assume that the same kind of approach can be used to determine 
the far-field wave system of the third-order diffraction potential. The result is that, 
to the leading order O(A3/p’I2),  the third-order diffraction potential consists of three 
components: ‘locked’ waves with wavenumber vector 2 kor + koo ; ‘locked’ waves with 
wavenumber vector k o ~  + K O ~ ;  and ‘free’ waves, travelling in the radial direction, with 
wavenumber po given by 9 w2 = g po tanh p o H .  

To summarize, the diffraction potential admits, at first, second, and third order, the 
following far-field expressions : 

first-order 

second-order 

third-order 
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where 

K1 = ko(2( 1 + cos 9))’/2, K2 = ko(5 + 4 cos 9)lI2, K3 = ( k i  + K: + 2 k o ~ o  cos 9)1’2 
(A 5 )  

are the wavenumbers of the locked waves, K1 at second order, and K2, K3 at third 
order. 

Knowing the far-field behaviour of the Green function and using the stationary 
phase method we can easily deduce the asymptotic behaviour of the integrals I,: 

which are thus zero when p -+ 00. 

Appendix B. Comparison with Faltinsen et al.’s (1995) theory 
As mentioned in the Introduction, Faltinsen et al.’s theory rests upon different 

assumptions, namely both the cylinder radius a and the wave amplitude A are 
assumed to be small, and of the same order. In our approach only A is small 
(compared with the wavelength). So it is not obvious that both sets of results are 
comparable. Still we believe they must be, because Faltinsen et al. produced a 
triple-frequency load that is O(A3),  that is third order in the wave amplitude, just like 
ours. So their and our triple frequency loads should agree in the limit ka -, 0. 

In this Appendix we report two further comparisons between Faltinsen et al.’s 
theory and ours, dealing with the second-order (double harmonic) potential, and the 
Ff) component to the third-order loads. 

The second-order diffraction potential is given by Faltinsen et al. as 

&) = -iw ko A2 a (yo(r, z )  + y2(r, z )  cos 28) (B 1) 

(their equation (3.14), with a correction in sign to account for our slightly different 
conventions). 

From Faltinsen et al.’s figure 3, at the waterline (r = a, z = 0), y2 is equal to 0.8. 
So we present on figure 10, as functions of koa, our calculated values of the imaginary 
parts of &i(a,0)/A2, together with the curve -0.40 ko (a  being equal to 1 m, and 
koH to 8. y2 has been divided by 2 according to our convention - see (3.8)). As in 
figure 2(a), we have separated the local and the oscillatory component &. We can 
see that our local component and Faltinsen et al.’s simple result do merge together 
when koa -+ 0, while the oscillatory component goes to zero at a much faster rate. 
However it is not negligible for koa > 0.05. 

The second comparison that we show deals with the F r )  component to the third- 
order load. It is simply given by Faltinsen et al. as 

(B 2) = - i i n p g  k o a  2 2 ~ 3  

while in our approach it consists of two terms: 
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and 

F f I C  = --p v LBO q(’) q(2) n dC. (B 4) 

According to Faltinsen et al.’s theory the first term is dominant, the second one 
being of a higher order in koa. 

Figure 11 shows those three components, plotted versus koa. Again, the values 
given by equations (B2) and (B3) do merge together when koa + 0, while those given 
by equation (B4) do appear to be of higher order. However when one adds up Ff)’ 
and Ff)‘, deviations from the asymptotic result very quickly occur when koa increases 
from zero. The difference is already about 50 % for koa = 0.035. 
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